
A Trace-Driven Simulation Study of Dynamic
Load Balancing

- ..

Songnian Zhou

Report No. UCB/CSD 87/305

September 1986
PROGRES Report No. 86.4

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
A Trace-Driven Simulation Study of Dynamic Load Balancing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A trace-driven simulation study of dynamic load balancing in homogeneous distributed systems supporting
broadcasting is presented. We use information about job CPU and I/O demands collected from a
production system as input to a simulation model that includes a representative CPU scheduling policy and
considers the message exchange and job transfer costs explicitly. Seven load balancing algorithms are
simulated and their performances compared. We find that load balancing is capable of significantly
reducing the mean and standard deviation of job response times, especially under heavy system load, and
for jobs with high resource demands. The performances of all hosts, even those originally with light loads,
are generally improved by load balancing. The reduction of the mean response time increases with the
number of hosts, but levels off at around 30 hosts. Algorithms based on periodic or non-periodic load
information exchange provide similar performance, and, among the periodic policies, the algorithms that
use a distinguished agent to collect and distribute load information cut down the overhead and scale better.
They are also the most appropriate algorithms for adaptive load balancing, which has the potential of
offering near-optimal performance under a wide spectrum of system configurations and load conditions.
System instability in the form of host overloading is possible when the load information is not up-to-date
and the system is under heavy load; however, this undesirable phenomenon can be alleviated by simple
measures. Load balancing is still very effective even when up to half of the eligible jobs have to be executed
locally. The trace-driven simulation approach to the study of load balancing is found to be critical and
effective, an d is recommended for use before implementation efforts.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

-.

A Trace-Driven Simulation Study of Dynamic Load
Balanelng

Songnian Zhou

Computer Systems Research Group
Computer Science Division, EECS

University· or California, Berkeley t

ABSTRACT

A trace-driven simulation study of dynamic load balancing in homogeneous

distributed systems supporting broadcasting is presented. We use information

about job CPU and 1/0 demands collected from a production system as input to

a simulation model that includes a representative CPU scheduling policy and con

siders the message exchange and job transfer costs explicitly. Seven load balanc

ing algorithms are simulated and their performances compared. We find that

load balancing is capable of significantly reducing the mean and standard devia

tion of job response times, especially under heavy system load, and for jobs with

high resource demands. The performances or all hosts, even those originally with

light loads, are generally improved by load balancing. The reduction of the mean

response time increases with the number of hosts, but levels off at around 30

hosts. Algorithms based on periodic or non-periodic load information exchange

provide similar performance, and, among the periodic policies, the algorithms that

use a distinguished agent to collect and distribute load information cut down the

overhead and scale better. They are also the most appropriate algorithms for

adaptive load balancing, which bas the potential or offering near-optimal perfor

mance under a wide spectrum or system configurations and load conditions. Sys

tem instability in the form or host overloading is possible when the load informa

tion is not up-to-date and the system is under heavy load; however, this undesir

able phenomenon can be alleviated by simple measures. Load balancing is still

very effective even when up to half or the eligible jobs have to be executed

locally. The trace-driven simulation approach to the study of load balancing is

found to be efficient and effective, and is recommended for use before implemen

tation efforts.

t This work was partially sponsored by the Defense Adva.need Research Projects Agency (DoD), Arpa Order No.

4871, monitored by Spaee a.nd Naval Warfare Systems Conunand under Contract No. N00031l-8f-C-0080, a.nd by

the National Science Foundation under gra.nt DMC-8503576. The views a.nd conclusions contained in this docu

ment are those or the author a.nd should not be interpreted as representing official policies, either expressed or

implied, of the Defense Research Projects Agency or of the US Government.

- 2-

1. Introduction

Distributed computer systems are becoming increasingly available because of the drop in

hardware costs and advances in computer networking technologies. An important advantage of

distributed systems is the potential of resource sharing to provide the users with a rich collection

of resources that are usually unavailable or highly contended for in stand-alone systems. Exam

ples of sharable resources are files, computing power, and printers. It is frequently observed that,

in a computing environment with a number ot hosts connected by networks, there is a high proba

bility that some of the hosts are heavily loaded, while others are almost idle. Even if the hosts

are evenly loaded over long periods, ·such as half an hour or more, the instantaneous loads are

likely to be fluctuating constantly. t This suggests that performance gains may be achieved by

transferring jobs from the currently heavily loaded hosts to the lightly loaded ones. This form of

computing power sharing, with the purpose or improving the performance of a distributed system

by redistributing the workload among the available hosts, is commonly called load balancing, or

load sharing. t
The problem of load balancing has been studied using a number of different approaches over

the years. The early works mainly concentrated on static load balancing [3, 17, 18, 21]. In those

studies, job transfer decisions are made deterministically or probabilistically without taking into

consideration the current state of the system. The problem of program module assignment has

also been studied in a number of forms, with the basic assumption that the program concerned

can be partitioned into a number of modules with known resource consumptions and inter-module

communication costs. Load balancing is formulated as a mathematical programming or network

flow problem, and solved by optimizing some performance index such as the average response

time or the resource utilizations.

Static load balancing is simple and effective when the workload can be sufficiently well

characterized beforehand, but it fails to adjust to the fluctuations in system load. In contrast,

dynamic load balancing* attempts to balance the system load dynamically as jobs arrive.

Because of its generality and ability to respond to temporary system unbalances, dynamic load

balancing has received increasing attention from the research community [7, 8, 9, 11, 15, 16, 20].

Livny and Melman [16] showed, using simple queuing network models and simulation, that

dynamic load balancing can greatly improve average job response time. They also proposed a

number of implementable algorithms for load balancing. Eager et al. [9] carried the work further

by systematically studying a number of dynamic load balancing algorithms with different levels of

complexity. Their results confirmed the great potential of load balancing. They also claimed that

relatively simple algorithms can provide substantial performance improvements, while more com

plicated algorithms are not likely to offer much further improvement. Wang and Morris [20]

t Such observations, of course, are dependent on the system and the applications being run. For instance, in a
main-frame batch data processing environment, the loads might be even over long periods of time. In contrast,
however, in a workstation-rich environment, which is becoming more and more popular, the probability of a ma-
jority of the stations being idle or almost idle is very high [10).

* The term load balancing has sometimes been used to imply the objective of equalizing the loads of the hosts,
whereas load sharing simply means a redistribution of the workload. We will use the term load balancing in the
rest of this paper, but without the stronger connotation.

• Some authors used the terms adaptive load balancing and dynamic load balancing interchangeably. We decid
ed, however, to reserve the former for a particular form of load balancing to be described later in this paper.

-3-

conducted a comprehensive study and pointed out that the choice of a load balancing algorithm is

a crucial design decision. They also proposed a performance metric called the Q-factor, and used

it to evaluate the quality of the algorithms. Leland and Ott [15J performed an extensive study of

process behavior in the VAX/UNIX environment and evaluated the usefulness of initial process

assignment and process migration as forms of load balancing. A number or other researchers have

also considered process migration in their lo_a~ balancing algorithms [1, 4J. To limit the scope or

our study to a manageable level, however, we will not consider process migration in this paper.

Process migration is also much more difficult to implement, and involves higher costs in most sys

tems.

Although different authors make very different assumptions about system structures and

overhead costs, the main tools of study in dynamic load balancing have been queuing network

models and simulation with probabilistic assumptions about job arrivals and resource demands.

Unfortunately, a reasonably accurate analytic model for a real-world system with a load balancing

scheme of modest complexity can be very difficult to construct. Solving the models is even

harder. Consequently, many researchers are forced to make simplifying assumptions that are

often unrealistic, rendering the results or the studies subject to suspicion. For example, in order

to make the model tractable, the job interarrival time and the job execution time are often

assumed to be exponentially distributed. The utilizations of the hosts are sometimes assumed to

be the same, and the effects of the system scale on load balancing performance are often ignored.

For similar reasons, the costs of exchanging load information and other types of costs associated

with load balancing are often ignored or grossly simplified. Simulation models driven by probabil

ity distributions are capable of handling greater system complexity and thus solving a larger class

of problems, but it is still unclear how much error in the results is introduced by the distributional

assumptions made by the investigators.

To substantiate these criticisms, we traced a production VAX/UNIX* system for a number

of extended periods during working hours, and recorded the arrival times of the processest, as well

as their CPU and disk I/0 demands. The distributions of these measurements are shown in Fig

ures 1, 2 and 3, respectively. It can be seen that none or them follow an exponential pattern.

The inter-arrival time distribution is not very far from exponential, whereas the CPU and I/0

demand distributions are both highly skewed t. Similar observations have been made by other

researchers [5, 6, 15j.

In this paper, we study the problem or dynamic load balancing using an approach different

from those mentioned above. Job traces collected from a production system are used to drive a

simulation program that implements a number of load balancing algorithms. In this way, we

eliminate the errors caused by assumptions about the workload. The costs of message exchanges

and job transfers are considered so that performance comparisons between the algorithms can be

made on an equal basis. Two broad categories of algorithms are commonly recognized. In source

• UNIX is a. tra.demark of AT&T Bell La.bora.tories.

t In a. UNIX system, a. job corresponds to a. COITUllliJld line input by a. user, a.nd a. number of procurer may be
created to ca.rry out the job. We will not insist on this distinction in this pa.per, however.

t For a. job's 1/0 dema.nd, both synchronous a.nd a.synchronous disk I/O's a.re considered, while disk ca.che hits
a.re properly excluded.

N
u
m
b

0 ,
n

' e

y

•
I

(
p
0

w
e

0 ,
2
)

111.0

111.0

14.0

13.0

12.0

11.0

10.0

11.0

11.0

7.0

- 4-

mean = 2.581 seconds

std. dev. = 4.923 seconds

number or jobs = 273,346

total duration = 196 hours

- .

exponential

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Figure 1. Distribution of job inter-arrival times.

initiative algorithms, the hosts where jobs arrive take the initiative to transfer the jobs, whereas

in server initiative algorithms, hosts able and willing to receive transferred jobs go out to find

such jobs. A host may well be a source and a server at the same time. We concentrate on source

initiative algorithms in this paper.

A load balancing algorithm consists of a number oC components.

(1) The information policy specifies the amount of load and job information made available to

job placement decision maker(s), and the way by which the information is distributed. We

may require that the loads or all the hosts in the system be available to the decision

maker(s). Alternatively, no or only partial information may be available. Periodic updates

may be used to distribute load information, or the information may be provided upon

request (demand-polling). A distinguished agent may be involved in the load information

distribution, or no such agent may exist.

(2) The transfer policy determines the eligibility of a job for load balancing based on the job

and the loads or the hosts. It may not be desirable, for example, to transfer small jobs, and

some jobs may require specific resources available only on certain hosts, thus being unsuit

able Cor consideration.

(3) The placement policy decides, for eligible jobs, the hosts to which the jobs should be

transferred. An attempt may be made to select the least loaded host in the system, or only

an acceptable host is sought so that less load information is needed. Ir no suitable host can

- 5-

1.0

o.g
c
u
m 0.8

II

l - ..
a 0.7

t

v 0.11

e

D 0..5

s
t 0.4

r
i o.s b mean = 1.529 seconds
u
t 0.2 std. dev. = 22.551 seconds

0 number or jobs = 273,346
n 0.1 average utilization = 59.2%

total duration = 196 hours
0.0

-7 ·II -6 -4 -s ·2 ·1 0 1 2 s 4 6 II 7 8

Execution Time (power of 2)

Figure 2. Cumulative distribution of job CPU times (in seconds).

be found, the jobs will have to be processed locally.

The above three component policies of a load balancing algorithm are not isolated from each

other, but interact in various ways. For example, the load information available limits the possi

ble transfer policies. Because of the large number of options for each component policy, it is

impossible to study all possible policy combinations in this paper. Instead, we shall concentrate

on the information policies and some of the related placement policies, while keeping the other

aspects of the scheme fixed. Specifically, we are interested in comparing the performances of the

algorithms using periodic updates and of those acquiring information on demand. For the periodic

policies, we want to evaluate the performance impact of a global agent that collects and distri

butes load information of all the hosts in the system. We also want to study the problem of ins

tability caused by a number of hosts sending jobs all at the same time to a lightly loaded host,

thus making it overloaded. A number of representative load balancing algorithms are defined and

studied in detail. However, our objective is not to select the best algorithm, but rather, to study

the characteristics or various types or algorithms and the tradeoffs between conflicting require

ments.

The important results from this study include the following:

• A load balancing scheme using any reasonable algorithm can improve the job response times

by 30-60%, and make them much more predictable.

N
u
m
b
e
r

0

r
J
0
b
s

(
p
0
w
e
r

0
r
2
)

1&.0

15.0

14.0

13.0

12.0

11.0

10.0

11.0

8.0

7.0

&.0

6.0

4.0

- 6-

mean= 18.61

std. dev. = 92.77

number or jobs = 273,346

total duration = 196 hours

- .

exponential

0 00 M ~ W ~ ~ ~ ~ ~ ~

Number of Disk 1/0

Figure 3. Distribution of the number of disk I/O's per job.

• The mean response times of jobs on every host, even on those originally with light loads, are

reduced by load balancing.

• Periodic and non-periodic information policies provide comparable performance.

• For the periodic information policies, the global algorithms impose less overhead on the sys

tem than the distributed ones (typically hair or less for systems with 20 or more hosts), and,

hence, can support larger systems.

• Greater performance improvement can be gained by increasing the system size, but the

improvement levels off beyond a few tens or hosts, at which point it becomes more advanta

geous to implement load balancing in clusters.

• Instability may occur when load information is stale and the system load is high, but it can

be alleviated by simple measures.

• Load balancing can still be highly effective when up to hair of the jobs that are otherwise eli

gible for load balancing must be executed on their local hosts.

Our study also provides insights into the choice of a load balancing algorithm under different sys

tem environments and load conditions.

In the next section, we describe the system we simulate and the structure of the model. We

also discuss the load and performance indices we use. Section 3 describes the algorithms that we

studied in the simulation. The simulation results are presented in Section 4, along with a discus

sion and comparison of the algorithms. Some concluding remarks are made in Section 5.

- 7-

2. Experiment Design

2.1. The Job Trace

A distinguishing feature of our study is the use of job traces instead of probability distribu

tions to describe the arrival times and resource demands of the jobs. We traced a production

V AX-11/780 system running Berkeley UNIX to collect job traces consisting of tuples of the for-

mat - ..
<job arrival time, G_pV time demand, number of disk 1/0 's>.

Previous measurement studies conducted by the author [22] show that the CPU is the most con

tended resource in the type of time-sharing systems from which the job traces are derived. There

is usually plenty of main memory, hence little paging and almost no forced process swapping

occur. The networking subsystem is not heavily loaded either. Therefore, we will consider only

CPU and disk 1/0 in our model, while retaining confidence in the results of the simulation.

Heterogeneity, either architectural or configurational, complicates the load balancing prob

lem greatly, and is a deviation from the primary concerns of this research. Therefore, we will

concentrate on homogeneous systems. In fact, to insure homogeneity and to ease the trace collec

tion efforts, sessions of job traces were collected on the same host at different times to represent a

number of hosts connected by a network. t The selection of simulation session length is important

because the boundary effects caused by jobs started before the session begins and by those finish

ing after the session ends may significantly affect the accuracy or the results. On the other hand,

longer sessions involve greater efforts in trace collection and simulation. We chose the length of

each session to be four hours. Typically, about 6000 processes are created on each host during

this period. Even so, some of the processes executing during a session are not included. Such

processes are mostly system services that are started at system boot time and run until the sys

tem goes down, and a few very long batch jobs. Though small in number, they can represent a

significant portion of CPU time consumption. As a result, the simulated CPU utilizations during

the sessions are lower than in reality, typically by 5-15 percent.

2.2. Model Structure

The simulation model structure is shown in Figure 4. We adopt a foreground-background

round-robin scheduling policy for the CPU. The time quantum is 100 milliseconds, the same as

that used in the Berkeley UNIX system from which the trace was derived. After a job has accu

mulated 500 milliseconds of CPU time, it is put into the background queue, which will be checked

only if no job is available in the foreground queue. Since about 60-65% of the jobs have execution

times below this threshold, they will not be sent to the background queue, thus receiving priority

service. While the CPU scheduling policies in computer systems are usually more complicated, we

feel that the above policy captures their essential features, and may be considered representative.

Since the level of contention at the disks is usually low under normal operating conditions in the

type of system we measured [22], we model them as infinite servers causing only processing delays,

t It is recognized tha.t, by so doing, the possible temporal correla.tions between the loa.ds of the va.rious hosts a.re
lost.

- 8-

Disks

Host z

,lr, J_[, Network J_L,
I

1 Ho.t 1 I Hort e 1 Hort N 1

L l-- _j L ~-- J L ~-- J

Figure 4. Structure of system used in simulation.

but no queuing delays. 1/0 operations are assumed to be evenly spread throughout the execution

of the job f, and each disk 1/0 is assumed to take 30 milliseconds. A communication network

permits message passing and job transfers between the hosts. Since we are most interested in load

balancing in local distributed systems, we assume that the underlying network supports broadcast

(e.g., Ethernet). We also assume the existence of a distributed file system so that the the costs of

accessing the program and data files are roughly the same for all of the hosts. As a result, the

files do not have to be moved with the jobs to be load balanced. This assumption will be increas

ingly appropriate for future systems designed for distributed computing. Since our trace data is

derived from a time-sharing system without the support of a distributed file system, we are unable

to simulate the contention at the file servers, and we also do not have measurement data on

remote file accesses. The cost of 30 milliseconds for an 1/0 operation is therefore a rough approx

imation.

* Recording the times or the 1/0 oper&tions during job execution would gre&tly complic&te our tra.ce collection
effort &nd the model construction &nd simul&tion, without providing signific&nt benefit, in terms or model a.ccu
ra.cy, since the disks ue not the points or contention.

- 9-

2.3. Cost Assumptions

There are basically two types of overhead costs involved in load balancing. First, current

load indices of the hosts have to be computed and messages exchanged to make them known to

the decision makers. Secondly, placement decisions need to be made and jobs transferred between

the hosts. CPU time and network bandwidth are consumed for these purposes. The latter of

overhead also directly introduces extra delays in the jobs involved. (So is the former if load infor

mation is acquired while the job to be balanced is waiting, as is the case with a number of algo

rithms to be studied.) It has been experimentally observed that, in most current installations, local

area networks, such as the Ethernet, usually have plenty of bandwidth, and the delays in the net

work are small compared to the CPU cost of executing the communication protocols [14]. Conse

quently, we only consider CPU time overhead in this study. We assume that message exchange

and job transfer have preemptive priority over job execution. Based on measurements from our

experimental implementations of load balancing on the VAX/UNIX and SUN/Unix machines, we

assume that computing the current load and sending it out takes 20 milliseconds of CPU time,

while receiving load information and processing it takes 10 milliseconds. A job transfer is

assumed to take 100 milliseconds of CPU time for both the sending and the receiving host, and

causes 200 milliseconds delay to the job being transferred. This assumption seems to be less criti

cal than that for message cost because the algorithms we study mainly differ in their information

policies; a change in job transfer cost is likely to change their performances by similar amounts.

It should be pointed out that the above cost assumptions are very approximate; the actual

costs in terms of the CPU times spent and the job delays introduced are highly sensitive to the

load conditions of the hosts involved and the network load. They are also dependent on the

implementation of the underlying system, as well as on the size of the message and on that of the

job.

2.4. Load and Performance Metrics

In order to compare the performances of various load balancing algorithms, we need a

number of metrics. First, it is important to characterize the load on the whole system, as the per

formance of load balancing schemes varies with the system load. We choose the average CPU

utilization of all the hosts over the entire session as the load level indicator since it represents the

level of contention for the most critical resources in the system. We are also interested in a load

index that we can use to predict the response time of a job if that job is executed on a particular

host. Ferrari [10] pointed out, using mean value analysis, that a linear combination of the

resource queue lengths in a computer system can be an excellent predictor of job response time,

with the coefficients being the estimated resource consumptions of the job. In a previous measure

ment study [22], we found that the CPU queue length has a high correlation with the job response

time in a CPU-bound host, and hence suggests itself as a good load index.

To measure and compare the effectiveness of load balancing algorithms, we need to define a

performance index. We choose the mean job response time because decreasing the job response

time is our primary objective of load balancing. However, this does not measure the variability of

the job response times. We will use the standard deviation of the response times of all the jobs to

complement the mean response time.

- 10-

3. Load Balanelng Algorithms

We studied seven algorithms that use different types of information policies and related

placement policies. For ease of comparison, we base the transfer policy of all the algorithms on

the local host load and job execution time thresholds. When the CPU queue length of a host is at

or below a threshold, all jobs arriving there are processed locally. Otherwise, all the jobs arriving

at that host and with execution times above a certain threshold are eligible for load balancing.

Although job execution times are difficult to predict, it is possible to classify the jobs into two
- ..

rough categories: "big" jobs which are worth considering for load balancing, and "small" jobs not

to be considered. Moreover, estimation ·errors can be easily tolerated, as long as they are not too

frequent. Our studies of jobs submitted over 30 days show that such a classification can be made

with a very high success rate simply by looking at the job names. For example, a text processing

job will almost certainly take over 1 second of CPU time, whereas a directory checking operation

is clearly not worth considering for load balancing. One result of this research is that the perfor

mance of the load balancing algorithms is quite robust with regard to the job execution time

threshold (See Section 4.4).

The following algorithms were studied:

GLOBAL

Every T seconds, one of the hosts, designated as the load information center (LIC), receives

load updates from all the other hosts and assembles them into a load vector, which is then

broadcast to all the other hosts. If the load of a host is the same as that sent out the last

time, however, no update needs to be sent to the LIC. This applies to the next algorithm,

DISTED, as well.

The placement policy of the GLOBAL algorithm, as well as that of the next algorithm, is as

follows. The local version of the load vector is searched for a host with the shortest CPU

queue length, and, if the difference in CPU queue length between the local host and the

potential destination is at or above a given limit l (usually 1 or 2), the job is sent there. If

there are several hosts with the same shortest queue length, which is often the case, the first

one is selected. This rule, together with a randomized starting point for the search, can

potentially alleviate the instability problem as we will discuss later.

DIS TED

Instead of reporting the local load to a centralized LIC as in GLOBAL, each host broadcasts

its load periodically for the other hosts to update their locally maintained load vector.

CENTRAL

In the above two algorithms, placement decisions are made by each host using the local ver

sion of the load vector. In the CENTRAL algorithm, there exists a central scheduler for all

the hosts. When a host decides that a job is eligible for load balancing, it sends a request to

the central scheduler, together with the current value of its load. The central scheduler

selects a host with the shortest queue length and informs the originating host to send the job

there. The load vector on which the scheduler bases its decisions is updated using only the

load information sent by the hosts with the job requests.

- 11-

CENTEX

The same as CENTRAL except that, periodically, each host sends its local load to the LIC

(CENTral with EXchange). This algorithm can be regarded as a hybrid of GLOBAL and

CENTRAL.

For the above four algorithms, the load vector used in the placement decision is updated by

increasing the load of the destination host 15y an adjustable constant (currently 1). All the algo

rithms assume that the loads of all the.hosts are known to the placement decision makers, with

some delay. The algorithms below use less system state information, and thus have smaller over

head costs.

RANDOM

This algorithm uses minimum load information. When a job is found to be eligible for load

balancing, it is sent to a randomly selected host. The receiving host treats the transferred

job exactly as if it had arrived locally. To avoid the undesirable situation in which a job

bounces around indefinitely, we set a limit Lt such that the Lt 'th host receiving the job has

to process it no matter what its load is.

THRHLD

A number of hosts up to a limit L, are polled when an eligible job arrives, and the job is

transferred to the first host whose load is below a fixed threshold. If no such host is found,

the job is processed locally. When the message exchange cost is much lower than the job

transfer cost, this algorithm wins over RANDOM by avoiding costly job transfers.

LOWEST

This is similar to THRHLD except that, instead of using a threshold for the placement, a

fixed number of hosts are polled and the most lightly loaded host is selected. Thus, when

message overhead is higher, a potentially better host may be selected than by THRHLD.

The last three algorithms above are identical to the ones studied by Eager et al. j9J How

ever, we use a trace-driven simulation method to evaluate them, and we compare them to those

algorithms that use a load vector. The algorithms above make placement decisions on the basis

of various amounts of system state information. Since we consider the overhead costs of load

balancing explicitly, a direct assessment of the appropriate amount of load information for load

balancing can be made.

For comparison, we also implemented three boundary cases of load balancing:

NoLB

No load balancing is attempted; all arriving jobs are processed locally.

NoCOST

This is the unrealizable ideal case in which the current CPU queue lengths of all the hosts

are known to the transfer decision makers at no cost (in terms of CPU time and job delay),

and the transfers of jobs are also assumed to be costless.

PartCOST

This is the partly-ideal case in which perfect load information is assumed to be known at no

cost, but job transfer costs are considered.

- 12-

The performance of all the algorithms can be expected to be between those of NoLB and

NoCOST.

There are a large number of potentially useful load balancing algorithms besides the ones

listed above. As we stated earlier, our primary concern in this paper is not the particular algo

rithms to use, but rather the effects of different approaches to load information gathering and

placement decision making.

- ..
.(. Simulation Results

Simulation runs with various syste·m·sizes and load levels were executed. To make the per

formance comparisons between the algorithms meaningful, a number of simulation runs were con

ducted for each algorithm with different adjustable parameter values (e.g., job threshold, load

exchange period), and the best response time was selected. In this way, the comparisons are

between the best achievable performances of different algorithms, and it is hoped that they reveal

the qualities of the algorithms. The results of the simulation experiments are presented in the fol

lowing sections .

.(.1. Comparison of the Algorithms

Figure 5 shows the average response times of a system of 28 hosts under the load balancing

algorithms described above. Since job traces are used to drive the model, we cannot control the

utilization of the system. However, it is essential to observe the performance of the algorithms

under various load conditions. We achieve this by multiplying the job interarrival times by a con

stant factor. By varying the multiplication factor, we are able to generate a number of points for

each algorithm. Although the job stream is altered, the job characteristics (i.e., execution time,

number of I/0) remain the same. We feel that such a modification to the job stream is unlikely

to introduce significant errors in the results. t

The first observation in Figure 5 is that all the algorithms provide substantial performance

improvements over a wide range of system loads, compared to the NoLB case. In fact, response

times reasonably close to those of the NoCOST case are achievable. The higher the system load,

the greater the improvements. While we observed a greater-than-average improvement in the

mean response time of big jobs (e.g., with execution times greater than 1 second) the mean

response time of the small jobs does not suffer as a result. Figure 5 also demonstrates clearly the

relative performances of the algorithms. The performance of CENTRAL is the worst of the

seven. This is mainly because the global scheduler relies only on the load information provided

with job scheduling requests. It is observed that the frequency of placement decision making for

each host is one per 5-20 seconds, when the job threshold is 0.5-1.0 second. At such long inter

vals, the loads of the hosts are likely to have changed substantially. Consequently, a high percen

tage or the global scheduler's decisions are wrong.

In sharp contrast, the CENTEX algorithm, which is the same as CENTRAL except that

load information is periodically reported to the LIC, provides the best performance among the

t Two other choices are to multiply the job execution times by a. fa.ctor, a.nd to use different job streams. Howev

er, they both alter the job chara.cteristics a.nd seem to introduce more cha.nges to the workloa.d tha.n the method

we used, thus ma.king the comparison of performa.nces under different workloa.d levels Jess mea.ningfuL

- 13-

0.0

t-CENTRAL.

8.0 I
---- DISTED X

M
e 7.0 /RANDOM~ a
n

R
e 6.0 --GWBAL 0
s

::::- THRHLD V p
I

0

n /

s 5.0 ~WWEST 0
e

CENTEX IB
T

~ PartCOST + m 4.0

e

---·
3.0 -· ~NoCOST <>

e
c
0

n
d 2.0

1.0

0.0~--------p-------~---------r--------~------~
45.0 55.0 65.0 75.0 85.0 05.0

Average Host Utilization (percent)

Figure 5. Average response times under different load levels (28 Hosts).

seven. It has been widely assumed that, in distributed systems, centralized solutions are undesir

able because they tend to create performance bottlenecks and single points of failure. Such a

view, however, may be too simplistic if unqualified. The best solution is environment and problem

dependent. For load balancing, if the interprocessor communication is relatively efficient (such as

the case in this paper), and the system scale is limited (up to 50-100 hosts), the centralized

approach to load information distribution and job placement may be simple and efficient, as

demonstrated by Figures 5 and 6. The costs of job placements is reduced for all the hosts except

the LIC, as they now only need to send local load information and placement requests to the LIC,

rather than maintaining system-wide load information and performing placements themselves.

For the LIC, we observed that up to 35% of its CPU time may be spent for load balancing func

tions supporting a system of 49 hosts. Although this is a high overhead for this host, it is a small

price to pay for the whole system. In return, excellent placement decisions based on up-to-date

information are achieved. This explains why the performance of CENTEX is slightly better than

those of THRHLD and LOWEST, which only attempt to select a host from a small subset of the

• 14.

hosts. For many distributed applications, availability is crucial, hence a centralized solution is not

appropriate. This is not the case with load balancing, however. If the LIC goes down, some other

host can quickly detect the condition and take over its role. The loss or load information is not a

serious problem because load information becomes obsolete in a short while anyway. The brier

interval during which load balancing is unavailable should be easily tolerable because load balanc

ing is not an essential system service such as the naming service; its absence should in no way

interfere with system operations. In fact, an if!1plementation using essentially the CENTEX algo

rithm has been reported to provide effective load balancing (12J. In that environment, inter-host

communication is extremely fast, and the· global scheduler is claimed to be able to process 1000

requests per second.

The comparison between the GLOBAL and DISTED algorithms is highly instructive. Since

they are the same, except for their information policies, the significant performance difference

reveals the advantages or using a global agent as a relay point for load information exchange.

Assume that there are N hosts in the system, and let the update period be T seconds, and the

cost or sending and receiving a message plus related processing be M.,.., and M,_,, respectively.

For GLOBAL, the overhead due to the load information exchanges is

for the LIC, and

(N- 1) X Mmv + M,,.4 X (J'L

Cue = T 100:to

C = Mm4 + M,C11 X 100%
T

for the other hosts. Except for the LIC, the message overhead is independent or the system size

N. In contrast, for the DISTED algorithm, the message overhead for every host is

(N- 1) X Mmv + M.,..4 (J'L

C = T X 100:to

because, during each interval or duration T, every host has to process the messages broadcast by

every other host. t Compared to GLOBAL, we do not have a central point of failure and an extra

level of indirection in the distribution of load information in DISTED, but the overhead is higher

for every host, and grows linearly with the system size. Since the availability considerations are

not important, as discussed above, the GLOBAL algorithm appears more attractive than

DIS TED.

One somewhat surprlSlDg result from Figure 5 is that the two drastically different algo

rithms, GLOBAL and LOWEST, provide almost identical response times under a wide range or

system loads. The GLOBAL algorithm uses more extensive system state information in an effort

to make optimal transfer decisions. To achieve this, load information is exchanged at a high fre

quency, thus incurring high overhead. In the simulation runs, the value of T that provides the

best performance for GLOBAL is between 0.75 and 3 seconds. At such a high frequency, 1-3% of

the CPU time in every host is spent exchanging load information. The LOWEST algorithm does

t Due to the policy o(DOt tending OUt the local load information if it is the same U lut time, the actual over

heads of GLOBAL llld DISTED are lower thi.D presented here, typica.IJ,y by 40-70%, but the order I.DI.Iyses here

are still valid.

- 15-

not attempt to select the globally "best" host for job transfer, but rather only selects the least

loaded among a small group of randomly picked hosts. Although the time it takes to poll the

hosts directly increases the response time of the waiting job, more up-to-date load information is

used for job placement. A main reason GLOBAL is not able to perform better than LOWEST is

that there exists a fundamental contradictio~ .,between the need to frequently update the load vec

tors at each host and the low utilizations or the load vectors. Ir the exchange period is 1.0 second,

and the rate at which transfer decisions ·are made by a host is one job every 10 seconds, then 90%

or the load exchanges are wasted.

The above discussion seems to confirm the assertion made by Eager et al. 19] that more

complicated algorithms than THRHLD and LOWEST are not likely to provide substantially

better performance. In fact, the difference between LOWEST and the unrealistic NoCOST algo

rithm is already quite small. However, we do not observe the significant improvement from RAN

DOM to THRHLD, which was observed by Eager et al. This may be due to the fact that these

authors did not consider the message exchange costs explicitly in their study.

4.2. Effects of System Seale

Scalability is an important issue in load balancing. On the one hand, a larger pool or hosts

might improve the performance or load balancing. On the other hand, the overhead of load

balancing might grow with system size, and the management of the system becomes harder. The

average response times or the ten algorithms in systems containing 7, 14, 21, 28, 35, 42, and 49

hosts are shown in Figure 6. To make the comparisons meaningful, the overall system utilizations

are selected to be within a narrow range (see the host utilization numbers for the NoLB case at

the top or Figure 6), and the response times are normalized against that of NoLB.

The negative slopes or the NoCOST and PartCOST, as well as those or some or the other

algorithms, suggest the presence or economies of scale. As the number of hosts in the system

increases, the probability of finding a lightly loaded host increases, and the average response time

can be expected to decrease. This is most obvious for the NoCOST case, where the overhead

costs are not considered. For the more realistic algorithms, the overhead may increase with the

system size, making the increase in system size a mixed blessing. Therefore, the scalability of an

algorithm is an important property. On the other hand, it is interesting to observe that, as the

number of hosts increases beyond 28, the response times improve very little. Therefore, a scala

bility up to a few tens, or at most a few hundreds of hosts, seems sufficient. Beyond that point, it

makes more sense to implement load balancing using several clusters and perform inter-cluster

load balancing using longer-term load information. This observation further enhances the values

o(algorithms such as CENTEX and GLOBAL.

Again, in Figure 6, we observe the relative performances of the algorithms. The scalability

o(RANDOM, THRHLD and LOWEST is very good. (Their curves are almost parallel to that of

NoCOST.) This is because the number of hosts polled by the algorithms when a placement deci

sion is made is independent of system size. Comparing GLOBAL and DISTED, we see that the

former scales much better, which may be explained by the overhead analyses in Section 4.1. We

can see two conflicting factors in action by looking at the performance or the DISTED algorithm.

On the one hand, an increase in system size makes it easier to find a host with low load. On the

other hand, the message overhead grows linearly with system size. The composite effect is a

UT=

R
e

p
0

n
s
e

T
i
m
e

(
n
0

r
m
a
I
i
z
e
d
)

- 16-

81.11% 110.7% 83.1% 83.7% 62.5% 62.6% 82.7%

1.00 -------t!l----111----tl------t!l----11'----til
- NoLB B

0.00

0.80

0.70

0.60

0.50

-.

_-CENTRAL+

---- DISTED X

___.-- RANDOM A

GLOBAL 0

Number of Hosts

Figure 6. Average response time with different system sizes.

(normalized against the NoLB case)

moderately rising curve for the normalized response time. CENTRAL remains the worst in all

cases, while CENTEX demonstrates very good performance and satisfactory scalability.

4.3. Effects of Load Balancing on Indlvldual Hosts

In the previous studies of load balancing, it has been frequently assumed that the hosts in

the system are subjected to the same level of load !9, 16, 20J. (The job arrival rates and the pro

cessing rates of all the hosts are the same.) However, this is usually not the case in production

environments. It is very interesting to study the effect of load balancing on the individual hosts,

especially those originally with light loads. At the beginning of this research, we conjectured that,

while load balancing may improve overall system performance and that or the heavily loaded

hosts, the lightly loaded ones may suffer degradations in their performance because additional jobs

are transferred to them. We were, therefore, pleasantly surprised by the results from the simula

tions. The average response times of the individual hosts, with and without load balancing, are

- 17-

shown in Figure 7. As can be observed, the performances of all hosts are generally improved,

with the hosts under heavy loads showing greater improvements. Figure 7 clearly demonstrates

the power of dynamic load balancing: system performance may be greatly improved by taking

advantage of the temporal differences among the hosts' loads, and even hosts with light loads

benefit as congestions on them, though infrequent, can be relieved by other hosts.

- ..
mean

10.0 6.18 ---- NclE

2.74 ~ I>IS'IID
2.e5 1!--e CLQBo\L

2.!13 o---o LOWI':ST

2.20 ..-.... N>C05T

M
e 9.0
a
n

R
8.0

e
s 7.0
p
0
n 6.0
s
e

5.0
T

m 4.0
e

(3.0
s &,.....M:;-Iilo..

~ 2.0
0

d 1.0
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Host Number

Figure 7. Mean response times of individual hosts.

(Utilization without load balancing is 63.3%.)

Another beneficial effect of load balancing revealed by Figure 7 is that it makes the response

times more predictable. For some environments, this is even more important than the reduction

in the mean response time. Figure 8 provides a direct measure of this effect: while the average

response time is cut by a factor of 1.5 to 2.0, its standard deviation is cut by a factor of 2 to 4.

The measurements in Figures 7 and 8 are taken when the system is moderately loaded (the utili

zation for the NoLB case is 63.3%). The improvements of the mean and standard deviation of

response time are observed to be more drastic when the system load level is higher.

The term load balancing has in it the implicit meaning of equalizing the loads of the partici

pating hosts. Though this is not our objective, the equalizing effect of the algorithms studied in

this paper can be clearly seen in Figures 9 and 10. This is more pronounced with GLOBAL and

DISTED than with LOWEST because of the attempt of the former two algorithms at system-wide

optimization. It is interesting to note, in Figures 7 and 10, that the average response time of all

the jobs originating from a host may decrease while the host's utilization increases. The amount

of overhead introduced by a load balancing algorithm can be found in Figure 10 by subtracting

1110

140

s
t 120
a
n
d
a 100

r
d

80
D
e
v
i eo
a
t

40
0
n

- 18-

{184.82} std. dev.
4h.72 -- NoLB
14.30 &--11 GLOBAL
1e.oo o---o WWESI'
1!.21 NoCX:ST

- e

2 s 4 6 e 1 s o 10 11 12 1:1 14

Host Number

Figure 8. Standard deviations of response times or individual hosts.

(Utilization without load balancing is 58%.)

the average CPU utilization with no load balancing from that obtained with a specific algorithm.

As can be expected, the overhead or GLOBAL is higher than that of LOWEST, while both pro

vide similar performance. This is mainly because of the high frequency or load information

exchanges in GLOBAL. The overhead on the LIC in GLOBAL is proportional to the system scale,

and is higher than that on the other hosts. This is reflected by the significant increase in utiliza

tion or host 1, which we use as the LIC. While this reveals the limitation or the scaling ability or

the algorithm, we do not consider it a serious drawback because our simulation results show that

a single LIC is capable or supporting 50-100 hosts under our cost assumptions. At that point, the

economies or scale have almost no effect, and it is reasonable to implement load balancing in

several clusters.

4.4. Parameter Selection and Adaptive Load Balancing

Once the load balancing algorithm is decided, the performance is still sensitive to the specific

parameter values adopted. In this section, we assess the degree or such sensitivity. The adju

stable parameters depend on the algorithm. For all or the algorithms, we have a local load thres

hold and a job threshold. In addition, for the periodic information policies, we have the load

exchange period, whereas for the non-periodic policies, we have the probe limit. Figure 11 shows

the performance or the GLOBAL algorithm under various parameter combinations. The local

load threshold is set to zero. We can see that the exchange period has a strong influence on the

- 19-

mean
3.!1 2.04 ---- NcLB

0.116 *"--i< DISTED
0.01 11--11 CLOEV.L
0.00 o-·~ LOWEST

3.0 0.73 ~ NoO:ST

A
v
e
r 2.6

a
g
e

2.0

Q
u
e
u 1.6
e

L
e 1.0
n
g
t
h 0.6

0.0 +-..,.-,r--_..,._,r--_..,._,r--_..,._,r--_..,
2 3 4 6 II 7 I 0 10 11 12 13 14

Host Number

Figure 9. Average queue lengths of individual hosts

under different load balancing algorithms.

performance. When the period is too short (e.g., 0.35 second), the overhead is so high that, even

though the load information on which the transfer decisions are based is very up to date, the per

formance suffers. On the other hand, if the exchange period is too long (e.g., 10 seconds), the load

information is so out or date that frequent mistakes are made in job placements. (Jobs are sent

to hosts with equal or higher load than the local host.)

In contrast, performance seems to be less sensitive to the job threshold. (The average

response time when only jobs with CPU execution time greater than 1.0 second are considered for

load balancing is close to those when jobs above 0.5 or 2.0 seconds are considered.) This observa

tion supports our earlier claim that only an approximate separation between big and small jobs is

necessary to achieve good performance. Looking more closely, we again observe a similar pattern

with the job threshold: when the job threshold is too high (e.g., 3 seconds), the full potential of

load balancing is not realized, whereas when it is too low (e.g., 0.25 second), the overhead of job

transfers outweighs the benefit, and performance becomes worse. There is also interaction

between the two parameters; when the exchange period is lengthened, the corresponding optimal

job threshold increases.

It is important to recognize that the combination of parameters that yields the best perfor

mance is highly dependent on the system load level. Table 1 attempts to illustrate this. Gen

erally speaking, the higher the load, the higher the job threshold and the longer the exchange

period should be. For LOWEST, an increase in the probing limit may yield poorer performance

0.80

0.76

u 0.70

t

z 0.116

a
t

0
0.110 n

- 20-

tft~n
113.3% ----- NoLB
117.3% IJ--EI GLOBAL
116.4% o---i> W\o\IESr
113.3% ..._.... NoC05T

1 2 S 4 o II 7 8 g 10 11 12 1! 14

Host Number

Figure 10. Utilizations of individual hosts under different load balancing algorithms.

when the load is high.

Table 1. Optimal Parameter Values under Different System Load Levels (28 hosts).

Utilization (%) 48.1 56.2 63.3 72.3 79.1 85.1

GLOBAL

Load Exch Pd 0.5 0.5 0.75 1.0 1.5 2.0

Job Thrd 0.4 0.5 0.5 0.75 1.0 1.5

DIS TED

Load Exch Pd 1.5 2.0 2.5 3.0 4.0 5.0

Job Thrd 0.4 0.5 0.75 1.0 1.5 2.0

LOWEST

Job Thrd 0.4 0.5 1.0 1.0 1.5 2.5

Load Thrd 0 0 0 0 0 0

92.1

3.0

2.0

7.5

2.5

4.0

0

(The numbers a.re approximate, as only a spa.rsely allocated set or operating points in the multi-dimensional pa.rameter

spa.ce are tested for ea.ch algorithm)

- 21-

The sensitivity or load balancing performance over the parameter values suggests that some

form or adaptive load balancing may be able to provide good performance when system load

changes widely. Under adaptive load balancing, the system load is constantly monitored, and

changes in algorithms and/or adjustable parameters are made as the load changes so that the sys

tem is always operating at, or close to, the optimal point. Supporting multiple algorithms

involves complicated implementation, and changes in algorithms cannot be made frequently.

Furthermore, for the most promising algorithms, GLOBAL, CENTEX, and LOWEST, the perfor

mance differentials are quite small. Consequently, the gain from switching algorithms is probably

insignificant, and therefore not worth the effort. However, we are not making a general statement

here; for environments different from ours, and for algorithms other than the ones we studied,

using different algorithms under different loads might be quite advantageou!l.

In contrast to algorithmic change, parameter adjustments are much simpler, and capable or

significantly improving performance when the system load fluctuates widely. Here, we need a

system-wide mechanism that monitors load conditions and makes adjustment decisions. GLOBAL

and CENTEX are the most appropriate for this purpose. The LIC periodically receives load infor

mation from all the hosts, and can use such information to deduce the system state. It can then

send to the hosts the parameter values they should use.

4.6. Avoidance of Instability

The problem of instability introduced by load balancing is of major concern to the research

ers in this field. It is feared that, because of the delay in load information exchanges, several

hosts may transfer jobs to a once lightly loaded host, and cause it to be overloaded. After the

load information is updated, some other host(s) may become the victim(s). We call such

phenomenon of overloading hosts in turn host overloading. Another form of instability is job

thrashing, in which jobs are transferred too many times (or even for an indefinite number of

times, as analytically shown in (9J for RANDOM) in an attempt to find the optimal host for job

execution. Host overloading causes performance degradation because of unstable and uneven load

distribution among the hosts, whereas, for job thrashing, degradation is mainly due to excessive

job transfer overhead. Since we are mostly concerned with algorithms that transfer jobs only

once, we will study the host overloading problem here.

We consider a job transfer wrong if the destination host's CPU queue length is equal to or

greater than that of the originating host. There is a distinction between transferring a job

wrongly and collectively overloading a host; the former by itself will only increase the particular

job's response time, whereas the latter will potentially cause system-wide performance degrada

tion, due to the aggravated effects of the individual wrong transfers. This problem can be serious

because usually the transferred jobs are big. In order to quantitatively measure the level or host

overloading occurring in a system, we define the host overloading factor T to be the percentage of

wrong job transfers over all transfers:

T = number of wrong tronsf era X 100%
totol number of tronsf era

There are a number of factors that affect the level or host overloading, all having something

to do with the rate at which wrong transfers are made to a host because Tis roughly proportional

- 22-

A----4 Job 'Thrd - 3.0 IMIC.

4.e o-·-o Job 'Thrd - 2.0 oec.

.-.-. Job 'Thrd - 1.0 oec.
t

~ Job 'Thrd - 0.6 oec.

+-- -+ Job 'Thrd - O.l!li oec.
I

4.4 I

M
• ..
n

4.2
R
• •
p
0

n 4.0

• •

m 3.8

• 3.e
0

n
d
)

3.4

3.2+---..-----~r---....,r-------

0.36 0.6 1.0 2.6 11.0 10.0

Figure 11. Effect or Adjustable Parameters on Load Balancing Performance.

(GLOBAL, 14 hosts, utilization without load balancing: 72.3%)

to this rate. First, the staleness or load information bas a deciding effect. The staler the informa

tion, the more the jobs that are transferred wrongly. Therefore, the non-periodic information pol

icies that collect load information on demand are less susceptible to host overloading than the

periodic policies. Another important factor is the rate at which jobs that are candidates for

transfer arrive. This depends on the system load level and the job threshold. The higher the load

and the lower the job threshold, the larger the percentage of eligible jobs. To verify our intuitive

argument, we calculated T in simulation experiments for the GLOBAL algorithm using various

load exchange periods and job thresholds. Since it is difficult to consider three factors all chang

ing at the same time, we fixed the system load level at 79%. Such a system-wide utilization is

high, and host overloading may be expected to be quite serious. The results are shown in Figure

12, and agree with our intuition. It seems that host overloading does not have as disastrous

effects on system performance as we feared: very good performance can be achieved even when

there exists light overloading (T < 10%).

Besides load update frequency and job threshold, the system scale also affects host overload

ing, but to a lesser degree. It is important to know the number or hosts with the least load. For

the algorithms studied in this paper, placement decisions are based on the instantaneous CPU

queue lengths or the hosts. Since there may be more than one host with the same shortest queue

length, the transferred workload may be shared by them, thus reducing overloading. A larger sys

tem size makes such situation more probable. On the other hand, in a larger system, there are

- 23-

0.«1 6----6 Job TI!nl - 3.0 oec.

o--·-o Job TI!nl - 2.0 oec.

.--..... Job TI!nl - LO oec.

a-------o Job TI!nl - 0.6 oec.
0.36

+--+ Job TI!nl - 0.26 oec.

0
v 0.30

e - ..
r
1 0.26
0
a
d
i 0.20

n
g

F 0.16

a
c
t 0.10 I
0
r I

I

0.06

0.00

0.36 0.6 1.0 2.6 6.0 10.0

Load Exchange Period (second)

Figure 12. Percentage of wrong job placements for GLOBAL under

various load exchange periods and job thresholds.

(Number of hosts: 14, Average utilization: 79%)

also more sources of transferred jobs. To quantitatively study the number of hosts with the least

load as a function of system size and load update period, we recorded the load vector at a high

frequency during a simulation experiment for GLOBAL, and counted the number of hosts with the

least number of jobs at their CPU's. The actual shortest queue length is unimportant because we

are only concerned with the relative distribution here. Figure 13 shows the distributions for sys

tems with 14 and 28 hosts, and the exchange period fixed at 5 seconds. For shorter exchange

periods, the means of the number of hosts with the least load are slightly lower. We find that the

probability of having only one or two hosts with the least load is non-negligible; hence host over

loading can occur, as revealed using another metric in Figure 12. Consider the following case,

which was found to be typical: for a system with 14 hosts and a load level of 80%, the total rate

at which jobs are transferred by the GLOBAL algorithm using a job threshold of 1.0 second is 1-2

jobs/second. This means that, if we update load information every 5 seconds, 5-10 jobs may be

transferred to the single host that used to have the least load! This range is reduced to 1-2 jobs if

the exchange period is 1.0 second, and even lower if the system load is not at such a high level.

Hence, we see that whether host overloading occurs depends primarily on the system load and the

load exchange period.

p
e
r
c
e
n
t
a
g
e

0
r

n
t
e
r
v
a
I
s

24.0

22.0

20.0

I8.0

litO

I4.0

I2.0

IO.O

8.0

e.o

4.0

2.0

- 24-

14 hosts, UT = 79%, me&D = S.2

- .

28 hosts, UT = 79%, me&D = 6.3

0 I 2 S 4 6 ll 7 8 II IO 11 I2 IS I4 Hi Ill I7 IS Ill

Number of hosts with least load

Figure 13. Distribution of the number of hosts with the least load.

Load Expd = 5.0 sec., Job Thrd = 1.0 sec.

(.8. Immobile Job•

Throughout our studies so far, we have assumed that the jobs are mobile, that is, they can

be executed on any host in the system with exactly the same results. Although this assumption

holds for a large subset of the jobs, we do observe that some of the jobs are immobile. Examples

include jobs that perform local services and/or require local resources, such as system daemons,

login sessions, mail and message handling programs, and so on. There are also highly interactive

jobs, such as command interpreters and editors, for which remote execution will result in poor per

formance due to network latencies. Any implementation of load balancing must take the effects

of these immobile jobs into consideration. We define the immobility factor to be the percentage

of jobs that have to be executed on the local host, but are otherwise eligible for load balancing.

By varying the value of the immobility factor, the effect of immobile jobs is revealed. For a sys

tem of 28 hosts with an average CPU utilization of 63.7%, the results are shown in Figure 14.

The concave shapes of the curves are encouraging, as they indicate that effective load

balancing is still possible even if a significant proportion of the jobs are immobile. For an immo

bility factor of 0.4, the mean response time is only slightly higher than that for the case in which

all jobs are mobile (the immobility factor being 0). This observation is not surprising because

load balancing is achieved by only transferring a portion of the eligible jobs. (Typically, 50-70%

of the eligible jobs were actually transferred in the simulation experiments.) Consequently, even

though some or the eligible jobs are immobile, the rest or them can still produce most or the

- 25-

8.0

M
e
a 6.6

n

R 6.0
e
s
p
0 4.6
n
s
e

4.0

T

m 3.6
e

s s.o
e
c
0
n 2.6

d
)

2.0

0.0 0.2 0.4 0.8 0.8 1.0

Immobility Factor

Figure 14. Effect of immobile jobs.

performance benefits due to the balancing effect.

5. Conclusions

In this paper, we studied the load balancing problem using simulation models driven by job

traces collected from a production system. We simulated a CPU scheduling policy that is believed

to be representative, and we considered explicitly the costs o(load information exchange and job

transfers. Because of the generality of the model and the use of live system data, the results or

our simulation are believed to be more reliable than those from analytic models or simulations

driven by probability distributions. On the other hand, our results might be biased towards a par

ticular type or computing environment.

Seven load balancing algorithms were studied, including both ones using periodic information

policies and ones using non-periodic policies. We found that load balancing using any reasonable

algorithm can provide substantial performance improvement over the NoLB case. Specifically, the

average response time or all the jobs may be reduced by 30-60%, and the reduction in its stan

dard deviation is even more drastic, making the job response times much more predictable than in

the NoLB case. The higher the load, the greater the improvement, and longer jobs benefit more

from load balancing. Looking more closely, we found that the performance or all hosts, even

those originally with light loads, improve under effective load balancing. This is somewhat

counter intuitive, but very encouraging: by cooperating with each other, no one loses. We also

observed a strong tendency of load balancing to equalize the loads or the individual hosts; both

- 26-

the utilizations and the average CPU queue lengths of the hosts cluster within a small range.

By varying the size of the system, we observed significant but limited economies of scale.

For example, when four systems each with 7 hosts, or two systems each with 14 hosts, are com

bined into a single system of 28 hosts, the average response time is signifi{ antly reduced for the

algorithms with good scalability. However, beyond 28 hosts, the improvem ... nt diminishes quickly.

Consequently, a scalability of an algorithm up to 50-100 hosts seems to be ;;ufficient, and cluster

ing techniques should be used in large scale systems to avoid the potent; .• ny increasing overhead
- e

and the management complexities.

For the periodic load information policies, we found that the global approach has much less

overhead than the distributed approach, and, therefore, performs better and is more scalable. The

periodic and non-periodic policies provide comparable performances under our cost assumptions.

The algorithms that collect load information on demand (RANDOM, THRI-aD and LOWEST)

have the advantages of lower message exchange overhead, or being able to scale better, and or

being less susceptible to host overloading. On the other hand, the algorithms that rely on periodic

load exchanges (GLOBAL, CENTEX, and DISTED) have the advantages of being able to poten

tially choose the optimal hosts for job transfers, thus offering better performance, and of not sub

jecting the jobs eligible for transfer to the delays in getting load information.

The performance of load balancing using the algorithms studied in this paper is found to be

quite sensitive to the values of the local load threshold, load exchange period, and host probing

limit. The combinations of the parameter values that provide optimal performances are in turn

dependent on the system load level. Consequently, adaptive load balancing has the promising

potential of maintaining optimal performance under changing system configuration and load. The

GLOBAL and CENTEX algorithms are the most appropriate for this because of the presence of

the LIC. More research is called for in this area.

Host overloading is not significant for non-periodic algorithms, but may be serious with the

periodic algorithms. The deciding factors are the load update frequency, the system load, the job

threshold, and the system size. By using reasonably up-to-date load information and only

transferring a small percentage of jobs, host overloading can be effectively alleviated. Suboptimal

placement decisions may produce better performance than "optimal" decisions, because overload

ing on one or a small number of hosts may thus be avoided. Host overloading is not as serious as

we expected - very good performance can be achieved even when it occurs occasionally.

The impact of immobile jobs on load balancing is found to be less serious than the immobil

ity factor might suggest: most of the performance gains are still retained even when up to 50% of

the jobs are immobile.

We have been very much encouraged by the trace-driven simulation approach taken in this

research; it proves to be capable of handling greater complexities and of providing more credible

performance results than the approaches used before in load balancing research. On the other

hand, we only used data from a particular type of time-sharing environment, and so the generality

of our results is limited. The simplifying assumptions made in this research, though less unrealis

tic than those of the previous studies, may also have introduced errors in our results. It would be

very interesting to apply the techniques used in this research to other type!! of computing environ

ments, especially server-based workstation environments, and to comvare the findings. Such

- 27-

efforts are currently being planned.

In view of the proliferation of distributed systems, and of the great potential of load balanc

ing as demonstrated in this research and by other authors, it is highly desirable that load balanc

ing be made a standard service in future distributed systems to sub,tantially increase the perfor

mance of the system without adding any resources. Unfortunately, 'Jnly a few implementations

exist, and most of them were done in an ad hoc fashion [2, 12, 1:3, Hj. B~sides the implementa

tion difficulties involved, a genera) Jack of un-aerstanding of tZl o j::~!fO!,fl<f.lJCe characteristics of the

algorithms proposed and the engineering. tradeoffs involved are ~li-: Ina.jot obstacles. Trace-driven

simulation appears to be an appropriate tool for load balancing studies, and should be well

exploited before an implementation effort starts, because the latter is much more costly.

6. Acknowledgement•

The author wishes to express his deep gratitude to Domenico Ferrari for his invaluable

advice and continued support and encouragement throughout the course of this research. Com

ments by David Anderson, Hamid Bahadori, Luis Felipe Cabrera, Joseph Pasquale, and Harry

Rubin inspired a significant revision and improvement to the paper, and are gratefully ack

nowledged.

7. Reference•

[1]

[2]

[3]

A. Barak and A. Shiloh, "A Distributed Load Balancing Policy for a Multicomputer,"

Department of Comp. Sci., The Hebrew University of Jerusalem, 1984.

B. Bershad, "Load Balancing with Maitre d'," Tech Report, UCB/CSD 85/276, Computer

Science Division, University of California, Berkeley, December 1985.

S. H. Bokhari, "Dual Processor Scheduling with Dynamic Reassignment," IEEE Trans. Soft.

Eng., SE-5,4, July 1979, pp. 341-349. pp. 47-55.

[4] R. Bryant and R. Finkel, "A Stable Distributed Scheduling Algorithm," Proc. International

Conf. on Distributed Processing Systems, 1981, pp. 314-323.

[5] L. F. Cabrera, E. Hunter, M. Karels, and D. Mosher, "A User-Process Oriented Performance

Study of Ethernet Networking under Berkeley UNIX 4.2 BSD," To appear in IEEE Trans.

Soft. Eng., also as Tech. Report, UCB/CSD 84/216, Computer Science Division, University

of California, Berkeley, December 1984.

[6] L. F. Cabrera, "The Influence of Workload on Load Balancing Strategies," Proc. 1986 Sum

mer USENIX Conference, Atlanta, GA, June 1986, pp. 446-458.

[7] Y. Chow and W. Kohler, "Models of Dynamic Load Balancing in a Heterogeneous Multiple

Processor System," IEEE Trans. Comp. C-28,5, May 1979, pp. 354-361.

[8] D. Eager, E. Lazowska, and J. Zahorjan, "A Comparison of Receiver-Initiated and Sender

Initiated Dynamic Load Sharing," Tech Report 85-04-01, Dept. of Comp. Sci, Univ. of

Washington, April1985.

[9] D. Eager, E. Lazowska, and J. Zahorjan, "Dynamic Load Sharing in Homogeneous Distri

buted Systems," IEEE Trans. Soft. Eng., SE-12,5, May 1986, pp. 662-675.

[10] D. Ferrari, "A Study of Load Indices for Load Balancing Schemes," Tech Report, UCB/CSD

85/262, Computer Science Division, University of California, Berkeley, October 1985; also

in: G. Serazzi, Ed., "Workload Characterization of Computer Systems and Computer Net

works," North-Holland, Amsterdam, 1986.

[11] A. Hac, and T. J. Johnson, "A Study of Dynamic Load Balancing in a Distributed System",

Proc. ACM SIGCOMM Symposium on Communications, Architectures and Protocols,

Stowe, Vermont, August 1986, pp. 348-356.

- 28-

[12] R. Hagmann, "Process Server: Sharing Processing Power in a Workstation Environment,"

Proc. Principles of Distributed Computing, Cambridge, MA, May 1986.

[13] K. Hwang, W. Croft, G. Goble, B. Wah, F. Briggs, W. Simmons, and C. Coates, "A UNIX

based Local Computer Network with Load Balancing," IEEE Computer, 15,4, April 1982,

pp. 55-66.

[14] E. Lazowska, J. Zahorjan, D. Cheriton, and W. Zwaenepoel, "File Access Performance of

Diskless Workstations," Tech Report 84-06-01, Dept. of Comp. Sci, Univ. of Washington,

June 1984. -.
[15] W. Leland and T. Ott, "Load-balancing Heuristics and Process Behavior," ACM SIC

METRICS Conf., May 1986, pp.-54-69.

[16] M. Livny and M. Melman, "Load Balancing in Homogeneous Broadcast Distributed Sys

tems," Proc. ACM Computer Network Performance Symposium, April 1982,

[17] H. S. Stone, "Multiprocessor Scheduling with the Aid of of Network Flow Algorithms", IEEE

Trans. Soft. Eng., SE-3,1, January 1977, pp. 85-93.

[18] H. S. Stone, "Critical Load Factors in Two Processor Distributed Systems", IEEE Trans.

Soft. Eng., SE-4,3, May 1978, pp. 254-258.

[19] M. Theimer, K. Lantz, and D. Cheriton, "Preemptive Remote Execution Facilities for the

V-System," Tech Report No. STAN-CS-85-1087, Computer Science Dept., Stanford Univ.,

September 1985.

[20] Y. Wang and R Morris, "Load Balancing in Distributed Systems," IEEE Trans. Comp. C-

34,3, March 1985, pp. 204-217.

[21] S. Wu and M. Liu, "Assignment of Tasks and Resources for Distributed Processing," Proc.

COMPCON, Fall1980, pp. 655-662.

[22] S. Zhou, "An Experimental Assessment of Resource Queue Length as Load Indices," Tech

Report, UCB/CSD 86/298, Computer Science Division, University of California, Berkeley,

April1986.

